{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pre-calculated tables & interpolation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Profile tables"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For convenience (and to save computation time!), profiles over a range of radii have been computed for the following set of Sérsic indices `n` and flattening (or \"stretching,\" if prolate) `invq`:\n",
"\n",
" n_arr = np.arange(0.5, 8.1, 0.1)\n",
" invq_arr = np.array([1., 2., 3., 4., 5., 6., 7., 8., 10., 20., 100.,\n",
" 1.11, 1.25, 1.43, 1.67, 2.5, 3.33, 0.5, 0.67])\n",
"\n",
"\n",
"These tables can be loaded as follows."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import os\n",
"import deprojected_sersic_models as deproj_sersic\n",
"table_dir = os.getenv('DEPROJECTED_SERSIC_MODELS_DATADIR')\n",
"\n",
"table = deproj_sersic.io.read_profile_table(n=1.0, invq=5.0, path=table_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"By default, if `path` is not specified, then the system variable ``DEPROJECTED_SERSIC_MODELS_DATADIR`` (e.g., as set in your `.bashrc` file) is used."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The tables contain a range of profiles and constants, which are accessed as `table['key']`. \n",
"\n",
"| Table key | Description | Units | Type |\n",
"| ----------------------- | --- | --- | --- |\n",
"| `R` | Radius | $\\mathrm{kpc}$ | array |\n",
"| `vcirc` | Circular velocity | $\\mathrm{km/s}$ | array |\n",
"| `menc3D_sph` | Enclosed 3D mass | $M_{\\odot}$ | array |\n",
"| `rho` | Mass density | $M_{\\odot}/\\mathrm{kpc}^3$ | array |\n",
"| `dlnrho_dlnR` | Slope of log mass density | | array |\n",
"| `mend3D_ellipsoid` | Enclosed 3D mass in spheroid | $M_{\\odot}$ | array |\n",
"| | | | | \n",
"| `n` | Sérsic index | | const |\n",
"| `q` | Intrinsic axis ratio | | const |\n",
"| `invq` | Flattening $1/q$ | | const |\n",
"| `total_mass` | Total mass | $M_{\\odot}$ | const |\n",
"| `Reff` | 2D effective radius | $\\mathrm{kpc}$ | const |\n",
"| | | | | \n",
"| `menc3D_sph_Reff` | Enclosed 3D mass at $R_{\\mathrm{eff}}$ | $M_{\\odot}$ | const |\n",
"| `menc3D_ellipsoid_Reff` | Enclosed 3D mass in spheroid at $R_{\\mathrm{eff}}$ | $M_{\\odot}$ | const |\n",
"| `vcirc_Reff` | Circular velocity at $R_{\\mathrm{eff}}$ | $\\mathrm{km/s}$ | const |\n",
"| `ktot_Reff` | Total virial coefficient at $R_{\\mathrm{eff}}$ | | const |\n",
"| `k3D_sph_Reff` | 3D virial coefficient at $R_{\\mathrm{eff}}$ | | const |\n",
"| | | | | \n",
"| `rhalf3D_sph` | 3D spherical half mass radius | $\\mathrm{kpc}$ | const |\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These profiles can be scaled or interpolated to match different total masses or effective radii. \n",
"\n",
"The pre-computed table distribution are sampled from logarithmically in $R$, ranging from 0.01 to 100 kpc, but also includes the profile values at $R=0$."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Interpolation functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Interpolation functions are provided in ``deprojected_sersic_models`` to aid in such scaling / interpolation calculations. \n",
"\n",
"These functions can be used with or without pre-loaded tables."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpolating using loaded/computed tables"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The loaded table can be passed to these functions as shown below."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"total_mass = 1.e11\n",
"Reff = 5.\n",
"n = 1.0\n",
"invq = 5.0\n",
"R = np.arange(0., 30.1, 0.1)\n",
"vcirc = deproj_sersic.interpolate_sersic_profile_VC(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, table=table)\n",
"menc = deproj_sersic.interpolate_sersic_profile_menc(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, table=table)\n",
"rho = deproj_sersic.interpolate_sersic_profile_rho(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, table=table)\n",
"dlnrho_dlnR = deproj_sersic.interpolate_sersic_profile_dlnrho_dlnR(R=R, Reff=Reff, n=n, \n",
" invq=invq, table=table)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For comparison with the original table (now in linear space):"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"%config InlineBackend.figure_format = 'svg' # Tutorial plot configuration\n",
"\n",
"# Make pseudo table bundle, for plotting\n",
"table_gather = {'R': R, 'vcirc': vcirc, 'menc3D_sph': menc, 'rho': rho, \n",
" 'dlnrho_dlnR': dlnrho_dlnR, 'n': n, 'invq': invq, 'q': 1./invq, \n",
" 'total_mass': total_mass, 'Reff': Reff }\n",
"\n",
"plot_kwargs = [{'color':'grey', 'ls':':', 'marker':'+', 'ms':5, 'label':'Table'},\n",
" {'lw': 2., 'label':'Interp+scale'}]\n",
"\n",
"deproj_sersic.plot.plot_profiles([table, table_gather], \n",
" prof_names=['v_circ', 'enclosed_mass', 'density', 'dlnrho_dlnR'],\n",
" rlim=[R.min(), R.max()], rlog = [False, False, True, False], \n",
" plot_kwargs=plot_kwargs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpolating without loaded tables"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ``deprojected_sersic_models`` interpolation functions can also be used directly, without separately loading the pre-computed tables. \n",
"\n",
"The following example shows the syntax for this case."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"total_mass = 1.e11\n",
"Reff = 5.0\n",
"n = 1.0\n",
"R = np.arange(0., 30.1, 0.1)\n",
"invq_arr = [1., 2.5, 3.33, 5., 10.]\n",
"\n",
"vcs, mencs, rhos, dlnrho_dlnRs = [], [], [], []\n",
"\n",
"for invq in invq_arr:\n",
" vc = deproj_sersic.interpolate_sersic_profile_VC(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
" menc = deproj_sersic.interpolate_sersic_profile_menc(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
" rho = deproj_sersic.interpolate_sersic_profile_rho(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
" dlnrho_dlnR = deproj_sersic.interpolate_sersic_profile_dlnrho_dlnR(R=R, Reff=Reff, n=n, \n",
" invq=invq, path=table_dir)\n",
" vcs.append(vc)\n",
" mencs.append(menc)\n",
" rhos.append(rho)\n",
" dlnrho_dlnRs.append(dlnrho_dlnR)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Make pseudo table bundles, for plotting\n",
"tables = []\n",
"plot_kwargs = []\n",
"for invq, vc, menc, rho, dlnrho_dlnR in zip(invq_arr, vcs, mencs, rhos, dlnrho_dlnRs):\n",
" table_gather = {'R': R, 'vcirc': vc, 'menc3D_sph': menc, 'rho': rho, \n",
" 'dlnrho_dlnR': dlnrho_dlnR, 'n': n, 'invq': invq, 'q': 1./invq, \n",
" 'total_mass': total_mass, 'Reff': Reff }\n",
" tables.append(table_gather)\n",
" plot_kwargs.append({'label': 'q={:0.2f}'.format(1./invq)})\n",
"\n",
"fig_kwargs = {'legend_title': 'Intrinic axis ratio'}\n",
"\n",
"deproj_sersic.plot.plot_profiles(tables, \n",
" prof_names=['v_circ', 'enclosed_mass', 'density', 'dlnrho_dlnR'],\n",
" rlog = [False, False, True, False], \n",
" plot_kwargs=plot_kwargs, fig_kwargs=fig_kwargs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### \"Nearest\" interpolation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, the \"nearest\" versions of the interpolation functions \n",
"can also be used to find the closest value of `n` and `invq` \n",
"that have been pre-computed, and use those tables for interpolation. "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"total_mass = 1.e11\n",
"Reff = 5.0\n",
"n = 0.975\n",
"invq_arr = 4.75\n",
"R = np.arange(0., 30.1, 0.1)\n",
"\n",
"vc = deproj_sersic.interpolate_sersic_profile_VC_nearest(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
"menc = deproj_sersic.interpolate_sersic_profile_menc_nearest(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
"rho = deproj_sersic.interpolate_sersic_profile_rho_nearest(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
"dlnrho_dlnrho_dlnRdlnr = deproj_sersic.interpolate_sersic_profile_dlnrho_dlnR_nearest(R=R, Reff=Reff, n=n, \n",
" invq=invq, path=table_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interpolate all table profiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are cases where it is convenient to interpolate the entire set of profiles for a table. The function `interpolate_entire_table` enables this calculation (see also `interpolate_entire_table_nearest`)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"total_mass = 1.e11\n",
"Reff = 5.0\n",
"n = 1.0\n",
"invq = 5.0\n",
"R = np.arange(0., 30.1, 0.1)\n",
"\n",
"table_interp = deproj_sersic.interpolate_entire_table(R=R, total_mass=total_mass, Reff=Reff, \n",
" n=n, invq=invq, path=table_dir)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"deproj_sersic.plot.plot_profiles([table, table_interp], \n",
" ylog=[False, False, True, False, True, False],\n",
" rlog=False, rlim=[0.,30.])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, the pre-loaded table can be used directly."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"table = deproj_sersic.io.read_profile_table(n=n, invq=invq, path=table_dir)\n",
"table_interp2 = deproj_sersic.interpolate_entire_table(R=R, total_mass=total_mass, \n",
" Reff=Reff, table=table)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}