{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calculating deprojected Sérsic profiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The class `DeprojSersicModel` is used to compute profiles for the deprojected Sérsic mass distributions.\n",
"\n",
"First, we initialize an instance of `DeprojSersicModel`, and define a radius array."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import deprojected_sersic_models as deproj_sersic\n",
"\n",
"# Define a radius array\n",
"R = np.arange(0., 10.5, 0.5)\n",
"\n",
"# Deprojected Sérsic mass distribution object\n",
"smodel = deproj_sersic.DeprojSersicModel(total_mass=1.e11, Reff=5., n=1., q=0.2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Individual profiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A number of methods are available to compute the various profiles of this mass distribution."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Circular velocity**"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"vcirc = smodel.v_circ(R)\n",
"\n",
"# Make pseudo table for plotting\n",
"table_gather = {'R': R, 'vcirc': vcirc, 'n': smodel.n, 'q': smodel.q, 'invq': smodel.invq, \n",
" 'total_mass': smodel.total_mass, 'Reff': smodel.Reff}\n",
"\n",
"# Plot profile\n",
"%config InlineBackend.figure_format = 'svg' # Tutorial plot configuration\n",
"deproj_sersic.plot.plot_profiles_single_type(table_gather, prof_name='v_circ', \n",
" fig_kwargs={'figsize': (4., 8./9.*4.)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Enclosed mass (in 3D sphere)**"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"menc = smodel.enclosed_mass(R)\n",
"\n",
"# Make pseudo table for plotting\n",
"table_gather = {'R': R, 'menc3D_sph': menc, 'n': smodel.n, 'q': smodel.q, 'invq': smodel.invq, \n",
" 'total_mass': smodel.total_mass, 'Reff': smodel.Reff}\n",
"\n",
"# Plot profile\n",
"deproj_sersic.plot.plot_profiles_single_type(table_gather, prof_name='enclosed_mass', \n",
" fig_kwargs={'figsize': (4., 8./9.*4.)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Mass density**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"rho = smodel.density(R)\n",
"\n",
"# Make pseudo table for plotting\n",
"table_gather = {'R': R, 'rho': rho, 'n': smodel.n, 'q': smodel.q, 'invq': smodel.invq, \n",
" 'total_mass': smodel.total_mass, 'Reff': smodel.Reff}\n",
"\n",
"# Plot profile\n",
"deproj_sersic.plot.plot_profiles_single_type(table_gather, prof_name='density', \n",
" fig_kwargs={'figsize': (4., 8./9.*4.)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Log density slope**"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Log density slope\n",
"dlnrho_dlnR = smodel.dlnrho_dlnR(R)\n",
"\n",
"# Make pseudo table for plotting\n",
"table_gather = {'R': R, 'dlnrho_dlnR': dlnrho_dlnR, 'n': smodel.n, \n",
" 'q': smodel.q, 'invq': smodel.invq, \n",
" 'total_mass': smodel.total_mass, 'Reff': smodel.Reff}\n",
"\n",
"# Plot profile\n",
"deproj_sersic.plot.plot_profiles_single_type(table_gather, prof_name='dlnrho_dlnR', \n",
" fig_kwargs={'figure_figsize': (4., 8./9.*4.)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Projected mass surface density** *(i.e., 2D Sérsic distribution)*"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"surfdens = smodel.surface_density(R)\n",
"\n",
"# Make pseudo table for plotting\n",
"table_gather = {'R': R, 'surface_density': surfdens, 'n': smodel.n, \n",
" 'q': smodel.q, 'invq': smodel.invq, \n",
" 'total_mass': smodel.total_mass, 'Reff': smodel.Reff}\n",
"\n",
"# Plot profile\n",
"deproj_sersic.plot.plot_profiles_single_type(table_gather, prof_name='surface_density', \n",
" fig_kwargs={'figsize': (4., 8./9.*4.)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Projected enclosed** *(in ellipses; i.e., 2D Sérsic curve-of-growth)*"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"menc_2D = smodel.projected_enclosed_mass(R)\n",
"\n",
"# Make pseudo table for plotting\n",
"table_gather = {'R': R, 'projected_enclosed_mass': menc_2D, 'n': smodel.n, \n",
" 'q': smodel.q, 'invq': smodel.invq, \n",
" 'total_mass': smodel.total_mass, 'Reff': smodel.Reff}\n",
"\n",
"# Plot profile\n",
"deproj_sersic.plot.plot_profiles_single_type(table_gather, prof_name='projected_enclosed_mass', \n",
" fig_kwargs={'figure_figsize': (4., 8./9.*4.)})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Table of profiles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, the method `DeprojSersicModel.profile_table(R)` can be used to return a full set of profiles calculated over the radius array $r$."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"table = smodel.profile_table(R)\n",
"\n",
"# Plot profiles\n",
"deproj_sersic.plot.plot_profiles(table)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This procedure can be used to either recreate the pre-computed tables, \n",
"or to compute profiles for values of `n` and `q` that are not already available.\n",
"\n",
"In particular, this procedure can be scripted to compute new saved tables. \n",
"This is easily accomplished with the combination of `DeprojSersicModel.profile_table()` and `deprojected_sersic_models.io.save_profile_table()`. \n",
"\n",
"An example of such a scripting approach can be seen in the functions in `deprojected_sersic_models.table_generation.py`"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}