{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Built-in plotting functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plotting functions are available to visualize \n",
"the various profiles of the deprojected Sérsic mass distributions:\n",
"\n",
"| Function | Description |\n",
"| --------------------------------------- | ------------------------------------------ |\n",
"| `deproj_sersic.plot.plot_profiles` | Plot all profiles |\n",
"| `deproj_sersic.plot.plot_vcirc` | Plot circular velocity |\n",
"| `deproj_sersic.plot.plot_enclosed_mass` | Plot enclosed mass (in spheres) |\n",
"| `deproj_sersic.plot.plot_density` | Plot mass density |\n",
"| `deproj_sersic.plot.plot_dlnrho_dlnR` | Plot log density slope |\n",
"| `deproj_sersic.plot.plot_surface_density` | Plot projected mass surface density |\n",
"| `deproj_sersic.plot.plot_projected_enclosed_mass` | Plot projected enclosed mass (in ellipses) |\n",
"\n",
"Note that a range of inputs can be passed to these plotting functions, as demonstrated below. \n",
"These include either either individual pre-computed tables or ``DeprojSersicModel`` instances, or a list of either of these types."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import deprojected_sersic_models as deproj_sersic\n",
"table_dir = os.getenv('DEPROJECTED_SERSIC_MODELS_DATADIR')\n",
"\n",
"# Basic plotting example\n",
"%config InlineBackend.figure_format = 'svg' # Tutorial plot configuration\n",
"\n",
"total_mass = 1.e11\n",
"Reff = 5.0\n",
"n = 1.0\n",
"invq = 5.\n",
"R = np.arange(0., 30.1, 0.1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot circular velocity"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Load & interpolate circular velocity profile\n",
"vc = deproj_sersic.interpolate_sersic_profile_VC(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
"\n",
"# Make pseudo table & plot\n",
"table_gather = {'R': R, 'vcirc': vc, 'n': n, 'invq': invq, 'q': 1./invq, \n",
" 'total_mass': total_mass, 'Reff': Reff }\n",
"\n",
"\n",
"deproj_sersic.plot.plot_vcirc(table_gather)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot enclosed mass"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Load & interpolate enclosed mass profile\n",
"menc = deproj_sersic.interpolate_sersic_profile_menc(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
"\n",
"# Make pseudo table & plot\n",
"table_gather = {'R': R, 'menc3D_sph': menc, 'n': n, 'invq': invq, 'q': 1./invq, \n",
" 'total_mass': total_mass, 'Reff': Reff }\n",
"\n",
"deproj_sersic.plot.plot_enclosed_mass(table_gather)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot all profiles for a table"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"table = deproj_sersic.interpolate_entire_table(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir)\n",
" \n",
"# Plot all profiles in table\n",
"deproj_sersic.plot.plot_profiles(table)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ploting multiple tables"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"invq_arr = [1., 2.5, 3.33, 5., 10.]\n",
"tables = []\n",
"# Load & interpolate table for each n, invq\n",
"for invq in invq_arr:\n",
" tables.append(deproj_sersic.interpolate_entire_table(R=R, total_mass=total_mass, Reff=Reff,\n",
" n=n, invq=invq, path=table_dir))\n",
" \n",
"# Plot all profiles in tables\n",
"fig_kwargs = {'legend_fontsize': 7.}\n",
"deproj_sersic.plot.plot_profiles(tables, fig_kwargs=fig_kwargs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Customization\n",
"\n",
"It is also possible to plot subsets of the different profiles, and \n",
"change the plotting settings (including `rlog`, `ylog`, `plot_kwargs`, and `fig_kwargs`)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Customize \n",
"linestyles = ['-', '--', ':', '-.', '-']\n",
"colors = ['black', 'blue', 'red', 'green', 'purple']\n",
"lws = [1., 1., 1., 1., 2.]\n",
"markers = [None, None, '*', None, None]\n",
"markersizes = [None, None, 10, None, None]\n",
"markerfacecolors = [None, None, 'red', None, None]\n",
"markeredgecolors = [None, None, 'turquoise', None, None]\n",
"markeverys = [None, None, 50, None, None]\n",
"plot_kwargs = []\n",
"for i, invq in enumerate(invq_arr):\n",
" # plot_kwargs can be a dictionary, or a list of dictionaries.\n",
" # The keywords can include any keyword taken by matplotlib.pyplot.plot.\n",
" plot_kwargs.append({'label': 'q={:0.2f}'.format(1./invq), \n",
" 'ls': linestyles[i], \n",
" 'color': colors[i], \n",
" 'lw': lws[i], \n",
" 'marker': markers[i], \n",
" 'ms': markersizes[i], \n",
" 'mfc': markerfacecolors[i], \n",
" 'mec': markeredgecolors[i],\n",
" 'markevery': markeverys[i]})\n",
"\n",
"# fig_kwargs contains a few odds and ends customizations.\n",
"# This includes any accepted keywords for plt.figure with 'figure_' prepended, \n",
"# or any accepted keyword for matplotlib.axes.Axes.legend with 'legend_' prepended\n",
"fig_kwargs = {'figure_figsize': (8., 7.), \n",
" 'legend_title': 'Intrinic axis ratio', \n",
" 'legend_title_fontsize': 7., \n",
" 'legend_fontsize': 13.,\n",
" 'legend_labelcolor': 'linecolor'}\n",
"\n",
"deproj_sersic.plot.plot_profiles(tables, \n",
" prof_names=['v_circ', 'enclosed_mass', 'density', 'dlnrho_dlnR'],\n",
" rlog = [False, True, True, False], \n",
" ylog = [False, True, True, False], \n",
" plot_kwargs=plot_kwargs, fig_kwargs=fig_kwargs)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}